Firstly, we introduce the definition, properties integral theory of fractional Brownian motion.
首先介绍了关于分数布朗运动的定义, 性质.
The Brownian movement of pollens also shows the fractal characteristics.
花粉的布朗运动轨迹也具有分形特征.
Hurst exponent plays an important role in brownian motion.
Hurst指数是描述分数布朗运动的重要指标.
Random walks, brownian motion, diffusion.
随机行走, 布朗运动, 扩散.
Particles in Brownian motion can often be seen in colloids under special conditions of illumination.
布朗运动中的颗粒在特殊的照明条件下可以通过胶体的形式被观察到.
At the same time, astronomers can look for the spacetime analogues of random Brownian motion.
同时, 天文学家可以寻找时空版的随机布朗运动.
Stock prices are approximately brownian motion, which means they are everywhere continuous but nowhere differentiable.
股票价格接近于布朗运动, 即处处连续而无处可微.
Topics include Brownian motion, thermal noise, information theory, entropy, and the author's view of Maxwell's Demon.
其中包括有布朗运动, 热噪声, 信息理论, 熵和作者本身对麦克斯韦妖的看法.
In the ideal state, conformation of a flexible chain was simulated as a diffusionprocess { r _ t ( ω ), t & gt; 0 }.
在理想状态条件下, 我们用三维布朗运动{r_t ( ω ) 、 t & gt; 0}来模拟随机游动高分子链构象, 同时指出了三维布朗运动中各个变量在高分子链构象里重新赋予的直观意义.
The data of terrain features obtained using FBM methods can reflect complex character of the natural.
以分形布朗运动为基础来构造地形的相关数据可以较好地体现出地形这一具有复杂特征的自然景物的特点.
In 1827 , upon observing a suspension of pollen grains in water, he discovered BROWNIAN MOTION.
在1827年, 在观察水中悬浮的花粉粒时, 发现了布朗运动.
A signal model based on Fractional Brownian Motion ( FBM ) is a common model in nature.
分形布朗运动 ( FBM ) 信号模型是常见的描绘自然现象和物体过程的一种信号模型.
The theory of Brownian motion is the foundation of the pricing theory of Black Scholes.
布朗运动理论是布莱克-舒尔斯期权定价理论的基础.
Law of the iterated logarithm and martingale property theorem are two important theorems about Brownian motion.
重对数律及布朗运动的鞅刻划为有关布朗运动的两个重要理论.
The Fractal Brownian Motion ( FBM ) provides effective mathematics model, which has important application in Computer Graphics.
分形在计算机图形学领域有着重要应用. 其中的分形布朗运动 ( fBm, fractalBrownian motion ),为描述地形表面提供了有效的数学模型.