方程基本解释

汉语拼音:fāng chéng

含有未知数的等式,如x+1=3,x+1=y+2。也叫方程式。

方程详细解释

  1. 九章算术之一。

    《后汉书·马严传》“善《九章筭术》” 唐 李贤 注:“ 刘徽 《九章筭术》曰《方田》第一,《粟米》第二,《差分》第三,《少广》第四,《商功》第五,《均输》第六,《盈不足》第七,《方程》第八,《句股》第九。”《九章算术·方程》 白尚恕 注释:“‘方’即方形,‘程’即表达相课的意思,或者是表达式。於某一问题中,如有含若干个相关的数据,将这些相关的数据并肩排列成方形,则称为‘方程’。所谓‘方程’即现今的增广矩阵。”

  2. 今指方程式,即含有未知数的等式。如:x-2=5,x+8=y-3。使等式成立的未知数的值称为方程的“解”或“根”。求方程的解的过程称为“解方程”。

方程双语翻译,方程在线翻译例句

    • It was like a single equation with two unknowns.

      这挺像两个未知数组成了个简单方程.

    • The overwhelming majority of nonlinear differential equations are not soluble analytically.

      绝大多数非线性微分方程是不能用解析方法求解的.

    • Another system may be found which is also consistent with the equation.

      也许会发现与这个方程一致的另一系统.

    • These are equations of local conservation of mass and the jump condition.

      这些就是局部质量守恒方程和跃变条件.

    • The characteristic equations of the two equations are identical.

      两方程对应的特征方程是恒等的.

    • A quasilinear equation is one in which the highest - order derivative appears linearly.

      最高阶导数线性地出现的那种方程是准线性方程.

    • Determine the solution of this set and correct to two decimal places.

      求此方程的解并精确到两位小数.

    • Section 7.2 contains a resume of the fundamental equations.

      第7.2节包括那些基本方程的摘要.

    • After each reduction, the remaining equations remain symmetric and banded.

      在每次约化后, 余下的方程是保持对称和带状的.

    • Predictors have been constructed by modifying the Crank - Nicolson equation.

      预测式是利用修改克兰克-尼科尔森方程为构成的.

    • The schroedinger equation for the one - electron atom is exactly soluble.

      单电子原子的薛定谔方程是可精确求解的.

    • Lame - Maxwell equations of equilibrium have important applications in photoelasticity.

      拉密 - 麦克斯韦平衡方程在光测弹性力学中具有重要的作用.

    • Even in this case the equations of motion cannot be integrated exactly.

      即使是在这种情况下,运动方程也是不能精确积分的.

    • The potential equation had figured in the eighteenth - century work on gravitation.

      位势方程在十八世纪关于引力的研究中已显露头角.

    • Thus, enough equations are generated to make the problem determinate.

      于是, 产生了足够的方程使问题为定解.